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Problem (10.1): Electric Field for an Infinitesimal Dipole Radiator

Goal: Derive the far-field electric field produced by an infinitesimal (Hertz) dipole.

Step-by-Step Explanation:

Step 1: Start with the Vector Potential: According to the document (Eq. (9.25)), the vector potential
for an infinitesimal dipole (of length d and current amplitude I0) is given by

A(r) =
µ0I0d e

−ikr

4πr
ẑ ,

where k = ω/c and r = |r|. (This equation is derived by integrating the current distribution over
the small length of the dipole.)

Step 2: Express A in Spherical Coordinates: In spherical coordinates, the unit vector ẑ can be written
as

ẑ = cos θ r̂ − sin θ θ̂ . (see Eq. (9.26))

Therefore, the vector potential becomes

A(r) =
µ0I0d e

−ikr

4πr

[
cos θ r̂ − sin θ θ̂

]
.

Step 3: Find the Magnetic Field B: The magnetic field is obtained by taking the curl of A:

B = ∇×A . (see Eq. (9.27))

Detailed derivation (using spherical coordinates and the curl formula in Eq. (7.21)) yields a domi-
nant component in the ϕ direction. The document provides the result as

Bϕ =
µ0I0d

4π
e−ikr

(
ik

r
+

1

r2

)
sin θ . (Eq. (9.28))

Step 4: Derive the Electric Field E: In the radiation zone (far-field), the electric field is related to the
magnetic field by a phase shift and the intrinsic impedance of free space. Maxwell’s equations lead
to the relation

E = −∇Φ− ∂A

∂t
. (Eq. (9.3))

In the far-field, the dominant term comes from the time derivative of A. Taking a time derivative
(with e−ikr representing a time dependence e−iωt) gives

E ≈ jωA .

Focusing on the transverse (i.e. θ) component and neglecting higher-order terms (the 1/r2 term),
we obtain

Eθ ≈ jωµ0I0d

4πr
e−ikr sin θ . (Derived from Eq. (9.29))

Here, jωA indicates that the field oscillates with time and the factor j shows a 90° phase shift
relative to A.
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Summary: The far-field electric field (dominant θ-component) of an infinitesimal dipole is

Eθ(r, θ) ≈
jωµ0I0d

4πr
e−ikr sin θ .

This result is obtained by starting with the vector potential (Eq. (9.25)), converting it into spherical
coordinates (Eq. (9.26)), taking the curl to find B (Eq. (9.28)), and then using Maxwell’s equations to find
E (as in Eq. (9.29)).

Problem (10.2): Poynting Vector and Field Strength at 1 km

Question: For an isotropic radiator emitting 1 kW of power, determine:

• The magnitude of the Poynting vector at a distance of 1 km.

• The peak electric field strength at that distance.

Step-by-Step Explanation:

Step 1: Power Density: An isotropic radiator emits equally in all directions. Therefore, at a distance r,
the power density is

S =
P

4πr2
.

With P = 1000W and r = 1000m, we have

S =
1000

4π(1000)2
≈ 1000

12.57× 106
≈ 7.96× 10−5 W/m2 . (Derived from basic spherical spreading)

Step 2: Relating Poynting Vector to Electric Field: For a plane wave in free space, the time-average
Poynting vector is given by

⟨S⟩ = E2
0

2η
,

where E0 is the peak electric field and η ≈ 377Ω is the intrinsic impedance of free space. (This
comes from the relation P = E×H and H = E/η.)

Step 3: Solve for E0: Rearranging,
E0 =

√
2η⟨S⟩ .

Substitute η = 377Ω and ⟨S⟩ ≈ 7.96× 10−5 W/m2:

E0 =
√
2× 377× 7.96× 10−5 V/m .

Compute the product: 2× 377 ≈ 754, then 754× 7.96× 10−5 ≈ 0.06. Taking the square root,

E0 ≈
√
0.06 ≈ 0.245V/m .

Summary: The magnitude of the power density at 1 km is about 7.96 × 10−5 W/m2, and the peak
electric field strength is

E0 ≈ 0.245V/m .

These results use spherical spreading (basic physics) and the relation between the Poynting vector and the
electric field.
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Problem (10.3): Maximum Power Delivery and Load Resistance

Question: In the effective antenna circuit (Figure 9.3 of the document), for what value of Rload is the
maximum power delivered to the load?

Step-by-Step Explanation:

Step 1: Maximum Power Transfer Theorem: The maximum power transfer theorem states that maxi-
mum power is delivered to the load when the load resistance equals the source (antenna) resistance
(in the case of purely resistive impedances). (This is a basic circuit theorem found in any introduc-
tory circuit textbook.)

Step 2: Application: For the antenna circuit, if we denote the antenna’s radiation resistance as Rrad, then
maximum power is delivered when

Rload = Rrad .

Summary:

Rload = Rrad . (Maximum Power Transfer Condition)

Problem (10.4): Gain, Effective Area, and Their Ratio for an In-
finitesimal Dipole

Question: For an infinitesimal dipole antenna, determine the gain and the effective area, and show that
their ratio is λ2/(4π).

Step-by-Step Explanation:

Step 1: Gain of an Infinitesimal Dipole: It is a standard result in antenna theory (see Eq. (9.48)
and related discussion) that the maximum gain G of a Hertz dipole is approximately 1.5 (in linear
terms). (This result comes from comparing the maximum Poynting vector with that of an isotropic
radiator.)

Step 2: Effective Area: The effective aperture (area) A of an antenna is related to its gain by the formula

A =
λ2G

4π
.

(This is a well-known result in antenna theory and is mentioned in the text following Eq. (9.52).)

Step 3: Ratio of Effective Area to Gain: Dividing A by G, we obtain

A

G
=

λ2

4π
.

Summary: For an infinitesimal dipole antenna, the gain is approximately 1.5, and its effective area is

A =
λ2G

4π
.

Thus, the ratio is

A

G
=

λ2

4π
.
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Conclusion and Historical Context

These problems use a mix of electromagnetic theory and circuit analysis:

• Problem (10.1) starts from Maxwell’s equations and the definition of the vector potential (Eq. (9.25))
to derive the radiated electric field of a dipole.

• Problem (10.2) uses the concept of spherical spreading and the relation between the Poynting vector
and the electric field (Eq. (9.30) and the standard S = E2/(2η) formula).

• Problem (10.3) applies the maximum power transfer theorem from basic circuit theory.

• Problem (10.4) links antenna gain and effective aperture through a fundamental relation in antenna
theory.

These derivations are rooted in 19th-century discoveries by Maxwell, Hertz, and others, and they form the
basis of modern antenna design and wireless communications.
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